FÍSICA GRACELI TENSORIAL QUÂNTICA.





equação Graceli  quântica []


 G* =  = [          ] ω   / T] / c [    [x,t] ]  =  





 



equação Graceli  tensorial quântica [1]

  [DR] =            . =  

 = tensor energia momentum

 = tensor quântico de Graceli.


equação Graceli  tensorial quântica [2]

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  




 

    G  [DR] =             =

 G  [DR] =          =


EQUAÇÃO QUÂNTICA TENSORIAL GRACELI.

  G  [DR] =            .


 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .

 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .



     G  [DR] =             =

 G  [DR] =         =


 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .

 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .

    ] ω    =




tensor de energia-momento, também chamado tensor energia-impulso é uma quantidade tensorial em relatividade. Descreve o fluxo de energia e momento e satisfaz a equação de continuidade:

/

equação Graceli  tensorial quântica [2]

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


A grandeza

/

equação Graceli  tensorial quântica [2]

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


sobre uma seção de tipo espaço dá o quadrivetor energia-momento ou quadrimomento. Este tensor é a corrente de Noether associada às translações no espaço-tempo. Na relatividade geral, esta grandeza atua como a fonte do curvatura do espaço-tempo, e é a densidade de corrente associada às transformações de gauge (neste caso transformações de coordenadas) pelo teorema de Noether. Ainda que, no espaço-tempo curvado, a integral de tipo espaço depende da seção de tipo espaço, em geral. Não há de fato maneira de definir um vetor global de energia-momento num espaço-tempo curvado em geral.

Tensores relacionados[editar | editar código-fonte]

A parte tridimensional do tensor energia-momento coincide com o tensor tensão da mecânica de meios contínuos.

Exemplos[editar | editar código-fonte]

/


equação Graceli  tensorial quântica [2]

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  





Momento magnético do eletrão[editar | editar código-fonte]

O momento (dipolar) magnético de um eletrão é:

/


equação Graceli  tensorial quântica [2]

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


onde

 é o magnetão de Bohr,

 [a teoria clássica prediz que ; um grande êxito da equação de Dirac foi a predicção de que , que está muito próximo do valor exacto (que é ligeiramente superior a dois; esta última correcção se deve aos efeitos quânticos do campo eletromagnético)].





magnetão de Bohr, referido em alguns textos como magneton de Bohr, (símbolo ) é uma constante física relacionada com o momento magnético que recebe seu nome do físico Niels Bohr. Pode ser expresso em térmos de outras constantes elementares como:

/

equação Graceli  tensorial quântica [2]

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


onde:

 é a carga elementar,
 é a constante de Planck reduzida,
 é a massa em repouso do elétron

No sistema internacional de unidades se valor é aproximadamente:

 = 9,274 008 99(37)·10-24 J·T-1

No sistema CGS de unidades seu valor é aproximadamente:

Comentários

Postagens mais visitadas deste blog