FÍSICA GRACELI TENSORIAL QUÂNTICA.





equação Graceli  quântica []


 G* =  = [          ] ω   / T] / c [    [x,t] ]  =  





 



equação Graceli  tensorial quântica [1]

  [DR] =            . =  

 = tensor energia momentum

 = tensor quântico de Graceli.


equação Graceli  tensorial quântica [2]

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  




 

    G  [DR] =             =

 G  [DR] =          =


EQUAÇÃO QUÂNTICA TENSORIAL GRACELI.

  G  [DR] =            .


 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .

 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .



     G  [DR] =             =

 G  [DR] =         =


 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .

 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .

    ] ω    =



Na mecânica quânticaequação de Dirac é uma equação de onda relativística proposta por Paul Dirac em 1928 que descreve com sucesso partículas elementares de spin-½, como o elétron. Anteriormente, a equação de Klein-Gordon (uma equação de segunda ordem nas derivadas temporais e espaciais) foi proposta para a mesma função, mas apresentou severos problemas na definição de densidade de probabilidade. A equação de Dirac é uma equação de primeira ordem, o que eliminou este tipo de problema. Além disso, a equação de Dirac introduziu teoricamente o conceito de antipartícula, confirmado experimentalmente pela descoberta em 1932 do pósitron, e mostrou que spin poderia ser deduzido facilmente da equação, ao invés de postulado. Contudo, a equação de Dirac não é perfeitamente compatível com a teoria da relatividade, pois não prevê a criação e destruição de partículas, algo que apenas uma teoria quântica de campos poderia tratar.

A equação propriamente dita é dada por:

,


equação Graceli  tensorial quântica [2]

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


na qual m é a massa de repouso do elétron, c é a velocidade da luzp é o operador momentum linear  é a constante de Planck divida por 2πx e t são as coordenadas de espaço e tempo e ψ(xt) é uma função de onda com quatro componentes.



Eletrodinâmica quântica (EDQ), ou QED, de Quantum electrodynamics, é uma teoria quântica de campos do eletromagnetismo. A EDQ descreve todos os fenômenos envolvendo partículas eletricamente carregadas interagindo por meio da força eletromagnética. Sua capacidade de predição de grandezas como o momento magnético anômalo do múon e o desvio de Lamb dos níveis de energia do hidrogênio a tornou uma teoria renomada.

História[editar | editar código-fonte]

A eletrodinâmica foi a evolução natural das teorias da antigamente denominada segunda quantização, isto é, quantização dos campos, ao ramo da eletrodinâmica.

As teorias de campo são necessariamente relativísticas, já que admitindo-se que haja partículas mensageiras na troca de energia e momento mediados pelo campo, essas mesmas partículas, a exemplo do fóton (que historicamente precedeu a descoberta das teorias de quantização do campo) devem se deslocar a velocidades próximas ou igual à da luz no vácuo (c = 299 792 458 m/s).

A primeira formulação da eletrodinâmica quântica é atribuída a Paul Dirac, que nos anos 1920 foi capaz de calcular o coeficiente de emissão espontânea do átomo.[1] Essa teoria se desenvolveu a partir dos trabalhos Sin-Itiro TomonagaJulian Schwinger e Richard Feynman. Pelos seus trabalhos, eles ganharam o prêmio Nobel de Física em 1965.

Desenvolvimento formal[editar | editar código-fonte]

A eletrodinâmica quântica é uma teoria abeliana de calibre, dotada de um grupo de calibre U(1).

campo de calibre que media a interação entre campos de spin 1/2, é o campo eletromagnético, que se apresenta sob a forma de fótons.

A descrição da interação se dá através da lagrangiana para a interação entre elétrons e pósitrons, que é dada por:


equação Graceli  tensorial quântica [2]

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


onde  e sua adjunta de Dirac  são os campos representando partículas eletricamente carregadas, especificamente, os campos do elétron e pósitron representados como espinores de Dirac.





Fórmula da variação de Compton[editar | editar código-fonte]

Compton usou uma combinação de três fundamentais fórmulas representando os diversos aspectos da física clássica e moderna, combinando-os para descrever o procedimento quântico da luz[3].

  • Luz como uma partícula;
  • Dinâmica Relativística;
  • Trigonometria.

O resultado final nos dá a equação do espalhamento de Compton:


equação Graceli  tensorial quântica [2]

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


Onde:

 é o comprimento de onda do fóton antes do espalhamento,
 é o comprimento de onda do fóton depois do espalhamento,
me é a massa do elétron,
 é conhecido como o comprimento de onda de Compton,
θ é o ângulo pelo qual a direção do fóton muda,
h é a constante de Planck, e
c é a velocidade da luz no vácuo.

Coletivamente, o comprimento de onda de Compton é .




equação de Pauli , também conhecida como Equação Schrödinger-Pauli, é uma formulação da Equação de Schrödinger para um spin-partícula que leva em consideração a interação da rotação de uma partícula com o campo eletromagnético. Essas situações são os casos não-relativísticos da Equação de Dirac, onde as partículas em questão tem uma velocidade muito baixa para que os efeitos da relatividade tenham importância, podendo ser ignorados.

A equação de Pauli foi formulada por Wolfgang Pauli no ano de 1927.

Detalhes[editar | editar código-fonte]

A equação de Pauli é mostrada como:


equação Graceli  tensorial quântica [2]

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


Onde:

  •  é a massa da partícula.
  •  é a carga da partícula.
  •  é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
  •  é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são: 
  •  é o vetor de três componentes do potencial magnético.
  •  é o potencial escalar elétrico.
  •  são os dois componentes spinor da onda, podem ser representados como .

De forma mais precisa, a equação de Pauli é:


equação Graceli  tensorial quântica [2]

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


Mostra que o espaço Hamiltoniano (a expressão entre parênteses ao quadrado) é uma matriz operador dois-por-dois, por conta das matrizes  de Pauli.

Comentários

Postagens mais visitadas deste blog